超深基坑工程国际金融论文

【www.ahwmw.com--策划方案】

  随着城市地下空间的开发,越来越多的超大超深基坑涌现出来,本文详细介绍深圳平安金融中心超深基坑的设计和施工方案,并将设计计算结果和现场实测结果进行了比较,实测结果表明,基坑采用钻(冲)孔混凝土灌注桩+4道内支撑+高压旋喷桩和袖阀管注浆结合的方案是安全可行的。

  超深基坑工程国际金融论文

  1基坑支护设计方案

  1.1基坑的特点和难点通过前面工程概况、周边环境和地质条件的分析,本基坑工程存在以下特点和设计难点[2-7]:(1)基坑开挖深且大:主塔基坑开挖深度达33.8m,裙楼基坑深度达30.8m,基坑长约170m,宽约120m,周长约550m,33.8m的开挖深度属于超深基坑。

  (2)基坑开挖面积及土方量均较大:开挖面积大约18000m2,开挖土方约55万m3,基坑处于闹市区,且工期紧,设计时要考虑施工和出入方便。

  (3)含有软土层和透水层:场地内有软土层:人工填土,粉质黏土层,中粗砂、粉细砂和粗砾砂强透水层。

  (4)周边环境复杂:基坑四周有多栋在用的高档商场、住宅及办公楼,基坑开挖要考虑对建筑物的影响,建筑物边线距离基坑边大部分在20m左右,且要考虑基坑施工期间不能对居民区和商铺营业产生影响。

  (5)附近有市政管线和地铁1号线:最近的电缆管线距离基坑边只有3.8m,北侧还有正在运营的地铁1号线,地铁口及风亭紧邻基坑边,最近处仅3.0m,东侧有拟建的高铁线,距基坑边24.3m。

  (6)周边环境对基坑变形要求严格:本基坑工程的安全等级为一级,按新规范基坑水平位移控制在60mm(<0.25%H,H为基坑深度)即可以,但由于临近有地铁,地铁运营要求地铁相关构筑物位移不超过20mm,

  轨道竖向变形不大于4mm,对基坑开挖深度达33.8m,且存在透水层的情况下,这个位移控制对支 护设计提出了很高的要求,支护难度相当大。

  (7)超深超大桩基施工:基础采用人工挖孔桩,主塔的桩径达到8.0m(开孔9.5m),其他基础桩直径为5.7m(开孔6.8m),桩径超大,国内外罕见,巨型桩的开挖成孔难度大,深度最大为30m,因此,基坑支护设计时要充分考虑基础施工,不仅支护体系和支撑立柱要避开基础桩大直径挖孔桩,且要考虑土方开挖及出土的需要。

  1.2基坑支护方案选型分析及选取思路基坑设计方案选取需要考虑的因素有:基坑平面形状及尺寸,基坑安全等级及开挖深度,岩土体的性状及地下水条件情况,基坑周边对变形的要求,主体地下结构和基础形式,施工方案的可行性,施工工期和经济指标等。

  (1)锚索与内支撑的比较由于本基坑开挖深度较大,且周边具有市政管线、地铁和建(构)筑物等,锚索的长度会在基坑受到限制,与锚索方案相比,内支撑方式较好。

  (2)地下连续墙与排桩比较分析根据等效刚度原理排桩换算的连续墙厚度见表3,根据深圳地区排桩和连续墙施工技术、材料价格情况,一般地下连续墙的造价约为排桩造价的1.5~2.0倍。

  排桩在深圳地区基坑中应用较多,主要有旋挖桩和钻孔咬合桩,相比其他桩型,排桩的施工工艺成熟,施工设备多,综上所述选择排桩+内支撑支护结构。

  (3)桩型和支撑型式选择一般基坑支护现在常用挖孔桩、泥浆护壁钻孔桩、旋挖桩与咬合桩等,本基坑开挖达33m,加上支护桩的嵌固深度,支护桩长在40m左右,且存在砂层,因此不宜采用人工挖孔桩;另外在市区施工,

  泥浆护壁钻孔桩灌注桩对环境有一定影响;相比来说,旋挖桩较适合本项目,其成桩速度快;咬合桩入岩困难,不宜采用,经过综合比选,最后采用旋挖桩支护。

  基坑支撑体可选择纵横网格状支撑或环形支撑,由于该工程塔楼中心为“钢骨–劲性混凝土”核心筒,主塔楼外框采用8根巨型钢骨混凝土柱、7道巨型斜撑和7道环带桁架构成,见施工照片图4,因此考虑其施工限制,

  支撑采用采用钢筋混凝土双环支撑结构,其中南侧采用单环支撑,北侧单环直径较大,采用了环中套环的内支撑,圆环与支护桩之间采用4道钢筋混凝土撑。

  综合考虑各种因素,最终基坑支护方案为:钻(冲)孔混凝土灌注桩+内支撑(圆环)+四周封闭式止水帷幕的支护方案。

  1.3基坑具体支护设计方案选择基坑支护方案要综合考虑地质条件、地下水、上部结构、场地平面布置、基坑周围环境及经济性等因素。

  基坑最终支护方案采用:钻(冲)孔混凝土灌注桩+4道内支撑+高压旋喷桩和袖阀管注浆结合的方案,基坑平面图见图5。

  支护桩采用混凝土钻(冲)孔灌注桩,桩径有1600mm和1400mm两种,北侧(靠近地铁)支护桩采用1600@1800,其他支护区域1400@1600(见图6~8)。

  混凝土强度等级为C30,设置4道钢筋混凝土内支撑,并设置了两道大圆环钢筋混凝土支撑,其中支撑与地下室底板错开,主体结构核心筒布置在圆环撑内,这样核心筒施工不受支护的影响,

  其中主塔位置的大圆环支撑采用双圆环形式,外环内径为92.5m,内圆环内径62.5m,裙楼区域采用单圆环布置,圆环内径为60.0m,具体内支撑构件尺寸和截面见表4。

  立柱采用钢管混凝土,立柱设置均避开了基础及主体结构的柱,钢管立柱有900mm、800mm和700mm3种规格,壁厚20mm,C30混凝土填充钢管,钻(冲)孔混凝土灌注桩为立柱基础。

  1.4基坑止水设计方案前面分析可知,场地内含透水层(中粗砂、粉细砂及粗砾砂层),且最支护结构的变形控制要求比较严格[12],因此,采用什么方案止水对该基坑非常重要,

  是确保基坑周边地铁和建筑物安全的关键环节,结合支护方案和地质条件,最后采用三重止水措施:高压旋(摆)喷桩+袖阀管注浆+挂网喷射混凝土,具体止水设计方案见图9。

  止水帷幕施工完成后进行了围井抽水试验,结果表明:双重止水效果良好,止水帷幕扩散体的渗透系数达到10-6cm/s。

  1.5基坑监测方案设计由于基坑周边环境复杂,基坑设计中对基坑监测布置了比较全面的基坑支护监测体系,主要监测内容有:支护桩深部水平位移(测斜管)、支护桩顶水平位移和沉降观测、混凝土圆环及支撑布应力应变、地下水位、地面沉降、孔隙水压力、基坑内外土压力及支护桩内力,测点平面布置。

  2基坑土方施工方案

  本基坑开挖量达到55万m3,出土方案和施工方法是工程能否按期完成和控制基坑施工对周围建筑物影响的重要环节之一,基坑设计时为了出土方便和塔楼基础施工的限制,分别在北侧和南侧采用了环撑,北侧塔楼的内圆环内径为62.5m,南侧裙楼区域圆环内径为60.0m内径。

  为了加快出土速度,在南侧环形支撑内布置了出土栈桥,栈桥宽7m,栈桥内侧有1m宽的应急人行道,车道表面设置了20mm厚的防滑凹槽,两侧有1.2m的防护栏。

  栈桥采用钢管立柱及槽钢连梁连接,且与基坑内支撑和环撑是分开的,坡道顶部浇筑350mm厚的钢筋混凝土板,现场施工后的现场情况见图11。

  基坑土方主要通过栈桥运输出去。

  3基坑监测结果分析

  图12是4个测斜管实测的支护桩水平位移(QS1和QS2布置在北侧,QS3和QS5布置在东侧),支护桩的最大水平位移在20位置附近,QS1的最大值为25.13mm,QS2的最大值为24.23mm,QS3的最大值为20.34mm,QS5的最大值为18.49mm。

  图13是利用理正深基坑软件计算的QS1测斜管对应的支护断面,计算出的最大位移为31.40mm,实测值小于计算值,基坑监测结果没有达到设计提出的预警值,基坑仍处于安全状态。

  目前该项目的地下室部分已施工完,现场情况见图14。

  4结论

  随着城市地下空间的开发,越来越多的超大超深基坑涌现出来,本文详细介绍深圳平安金融中心超深基坑的设计和施工方案,并将设计计算结果和现场实测结果进行了比较,实测结果表明,基坑采用钻(冲)孔混凝土灌注桩+4道内支撑+高压旋喷桩和袖阀管注浆结合的方案是安全可行的。

  同时也可以得出如下可供同类工程参考的建议:(1)对于超深基坑,一种支护方案已很难满足复杂基坑的设计,应结合地质条件、周边环境和性价比等选用多种支护型式组合的设计方法。

  (2)当基坑处于城市交通繁忙地段,基坑周边有市政道路或建筑物时,基坑施工期间对变形控制要求比较高的,最好采用支撑刚度比较大的支护方案,同时开挖顺序对基坑变形也影响较大。

  (3)含有透水层地质时,基坑止水方案尤为关键,本实例中采用了多重止水方案:高压旋(摆)喷桩+袖阀管注浆+挂网喷射混凝土,现场抽水试验和基坑内渗水量表明:该止水方案的止水效果良好。

  (4)超深基坑出土方案直接影响工期,本基坑充分利用2个圆环的空间,设置了栈桥通道,土方开挖与内支撑布置空间配合,分段分片流水线出土。

  (5)在超深基坑中,全方面全过程的基坑监测至关重要,也是确保基坑和周边建筑物安全的重要手段之一。



本文来源:https://www.ahwmw.com/fanwenxiezuo/64203/

《超深基坑工程国际金融论文.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:

文档为doc格式